Presented by: Huanyi Chen

%?’ WATERLOO

= Engine?

= Unified?

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 2 @ WATE RLOO

= Engine?
= convert one form of data into other useful forms
» Unified?

= Multiple types of conversions

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 3 @ WATE RLOO

= What is Apache Spark? (Engine)

= How can it make multiple types of conversions over big
data? (Unified)

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 4 @ WATE RLOO

= A framework like MapReduce

= Resilient Distributed Datasets (RDDs)

sk

' >
' N

RDDs

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 5 @ WATE RLOO

Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks.

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HalLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-

nipulate them using a rich set of operators.

UNIVERSITY OF

Apache Spark: A Unified Engine for Big Data Processing PAGE 6 ii WATE RLOO

Resilient Distributed Datasets (RDDs)

MapReduce task MapReduce task

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 7 @ WATE RLOO

Resilient Distributed Datasets (RDDs)

MapReduce task MapReduce task

1/0 1/0

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 8 @ WATE RLOO

Resilient Distributed Datasets (RDDs)

MapReduce task }—ﬂ@——)[MapReduce task

memory

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 9 @ WATE RLOO

Resilient Distributed Datasets (RDDs)

= An RDD is a read-only, partitioned collection of records
= Transformations
= create RDDs (mabp, filter, join, etc.)
= Actions
= return a value to the application
= or export data to a storage system
= Persistence

= Users can indicate which RDDs they will reuse and choose a storage strategy for them
(e.g., in-memory storage).

= Partitioning

= Users can ask that an RDD’s elements be partitioned across machines based on a key
in each record.

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 10 @ WATE RLOO

Resilient Distributed Datasets (RDDs)

1 lines = spark.textFile("hdfs://...")

2 errors lines.filter(.startsWith("ERROR"))
3 errors.persist()

J
D
O
N
\
)
™
~
\‘ _{

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 11 @ WATERLOO

Resilient Distributed Datasets (RDDs)

= Lineage

= An RDD has enough information about how it was derived from
other datasets.

= Narrow dependencies

= each partition of the parent RDD is used by at most one partition of
the child RDD

= Wide dependencies:

= multiple child partitions

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 12 @ WATERLOO

Resilient Distributed Datasets (RDDs)

Narrow Dependencies: Wide Dependencies:
L)
L)
-
map, filter
| —
ﬁ\
(-
T = join with inputs
s co-partitioned
S— P join with inputs not
union

co-partitioned

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 13 @ WATE RLOO

Resilient Distributed Datasets (RDDs)

union Stage 3 !

Example: run an action on RDD G

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 14 @ WATE RLOO

MapReduce Ecosystem Spark Ecosystem

Specialized Systems

General
Batchi .
atching Streaming Iterative Ad hoc/SQL Graph Native S K MLIib GraphX
ar '
. . Spark parx machine raph
MapReduce Storm Mahout Pig Giraph P Streammg (. (g P
Apps learning) | processing)
S4 Hive
Samza Drill

Apache Spark
Impala

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 15 /@\ WATE RLOO

Higher-Level Libraries

Streaming SQL ML Graph

APACHE

Spork

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 16 @ WATE RLOO

SOL and DataFrames

Spark SQL: Relational Data Processing in Spark

Michael Armbrustt, Reynold S. Xint, Cheng Liant, Yin Huaif, Davies Liut, Joseph K. Bradleyt,
Xiangrui Meng’, Tomer Kaftan*, Michael J. Franklint*, Ali Ghodsit, Matei Zaharia'

tDatabricks Inc.

ABSTRACT

Spark SQL is a new module in Apache Spark that integrates rela-
tional processing with Spark’s functional programming API. Built
on our experience with Shark, Spark SQL lets Spark program-
mers leverage the benefits of relational processing (e.g., declarative
queries and optimized storage), and lets SQL users call complex
analytics libraries in Spark (e.g., machine learning). Compared to
previous systems, Spark SQL makes two main additions. First, it
offers much tighter integration between relational and procedural
processing, through a declarative DataFrame API that integrates
with procedural Spark code. Second, it includes a highly extensible
optimizer, Catalyst, built using features of the Scala programming
language, that makes it easy to add composable rules, control code
generation, and define extension points. Using Catalyst, we have
built a variety of features (e.g., schema inference for JSON, machine
learning types, and query federation to external databases) tailored
for the complex needs of modern data analysis. We see Spark SQL
as an evolution of both SQL-on-Spark and of Spark itself, offering
richer APIs and optimizations while keeping the benefits of the
Spark programming model.

*MIT CSAIL

*AMPLab, UC Berkeley

While the popularity of relational systems shows that users often
prefer writing declarative queries, the relational approach is insuffi-
cient for many big data applications. First, users want to perform
ETL to and from various data sources that might be semi- or un-
structured, requiring custom code. Second, users want to perform
advanced analytics, such as machine learning and graph processing,
that are challenging to express in relational systems. In practice,
we have observed that most data pipelines would ideally be ex-
pressed with a combination of both relational queries and complex
procedural algorithms. Unfortunately, these two classes of systems—
relational and procedural—have until now remained largely disjoint,
forcing users to choose one paradigm or the other.

This paper describes our effort to combine both models in Spark
SQL., a major new component in Apache Spark [39]. Spark SQL
builds on our earlier SQL-on-Spark effort, called Shark. Rather
than forcing users to pick between a relational or a procedural API,
however, Spark SQL lets users seamlessly intermix the two.

Spark SQL bridges the gap between the two models through two
contributions. First, Spark SQL provides a DataFrame API that
can perform relational operations on both external data sources and

UNIVERSITY OF

AGE 17 %’ WATERLOO

Apache Spark: A Unified Engine for Big Data Processing

SOL and DataFrames

» DataFrames = RDDs + Schema = Tables

= Spark SQL’s DataFrame API supports inline definition of
user-defined functions (UDFs), without the complicated
packaging and registration process found in other database
systems.

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 18 @ WATE RLOO

UDF in MyS(QL

-~ N\
place dll under certain directory of MySQL

C code = dll : MySQL code
register func1()

func1()

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 19 @ WATE RLOO

UDF in Spark SOL

val model: LogisticRegressionModel =

ctx.udf.register ("predict”,
(x: Float, y: Float) => model.predict(Vector(x, vy)))

ctx.sql ("SELECT predict(age, weight) FROM users")

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 20 @ WATE RLOO

Discretized Streams: Fault-Tolerant Streaming Computation at Scale

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, lon Stoica
University of California, Berkeley

Abstract

Many “big data™ applications must act on data in real
time. Running these applications at ever-larger scales re-
quires parallel platforms that automatically handle faults
and stragglers. Unfortunately, current distributed stream
processing models provide fault recovery in an expen-
sive manner, requiring hot replication or long recovery
times, and do not handle stragglers. We propose a new
processing model, discretized streams (D-Streams), that
overcomes these challenges. D-Streams enable a par-
allel recovery mechanism that improves efficiency over
traditional replication and backup schemes, and tolerates
stragglers. We show that they support a rich set of oper-
ators while attaining high per-node throughput similar
to single-node systems, linear scaling to 100 nodes, sub-
second latency, and sub-second fault recovery. Finally,
D-Streams can easily be composed with batch and in-
teractive query models like MapReduce, enabling rich
applications that combine these modes. We implement
D-Streams in a system called Spark Streaming.

faults and stragglers (slow nodes). Both problems are in-

evitable in large clusters [12], so streaming applications
must recover from them quickly. Fast recovery is even
more important in streaming than it was in batch jobs:
while a 30 second delay to recover from a fault or strag-
gler is a nuisance in a batch setting, it can mean losing
the chance to make a key decision in a streaming setting.

Unfortunately, existing streaming systems have
limited fault and straggler tolerance. Most dis-
tributed streaming systems, including Storm [37],
TimeStream [33], MapReduce Online [11], and stream-
ing databases [5.|9. [10], are based on a continuous op-
erator model, in which long-running, stateful operators
receive each record, update internal state, and send new
records. While this model is quite natural, it makes it
difficult to handle faults and stragglers.

Specifically, given the continuous operator model,
systems perform recovery through two approaches [20]:
replication, where there are two copies of each node
[S! 134], or upstream backup, where nodes buffer sent

UNIVERSITY OF

AGE 21 %’ WATERLOO

Apache Spark: A Unified Engine for Big Data Processing

Continuous operator processing model

mutable state

rimaries ((
>

input

replicas

Apache Spark: A Unified Engine for Big Data Processing

Discretized stream processing model

batch operation

t=1: input
immutaﬁ‘ / ?D:D et
dataset [:D:D dataset

. —

\ﬁ_l %_I
D-Stream 1 D-Stream 2

AGE 25 %’ WATERLOO

Reynold S. Xin
Joseph E. Gonzalez

{rxin, crankshaw, ankurd, jegonzal,

ABSTRACT

From social networks to language modeling, the growing scale and
importance of graph data has driven the development of numerous
new graph-parallel systems (e.g., Pregel, GraphLab). By restrict-
ing the computation that can be expressed and introducing new
techniques to partition and distribute the graph, these systems can
efficiently execute iterative graph algorithms orders of magnitude
faster than more general data-parallel systems. However, the same
restrictions that enable the performance gains also make it difficult
to express many of the important stages in a typical graph-analytics
pipeline: constructing the graph, modifying its structure, or express-
ing computation that spans multiple graphs. As a consequence,
existing graph analytics pipelines compose graph-parallel and data-
parallel systems using external storage systems, leading to extensive
data movement and complicated programming model.

To address these challenges we introduce GraphX, a distributed
graph computation framework that unifies graph-parallel and data-
parallel computation. GraphX provides a small, core set of graph-
parallel operators expressive enough to implement the Pregel and
PowerGraph abstractions, yet simple enough to be cast in relational
algebra. GraphX uses a collection of query optimization techniques
such as automatic join rewrites to efficiently implement these graph-
parallel operators. We evaluate GraphX on real-world graphs and
workloads and demonstrate that GraphX achieves comparable per-
formance as specialized graph computation systems, while outper-
forming them in end-to-end graph pipelines. Moreover, GraphX
achieves a balance between expressiveness, performance, and ease
of use.

GraphX: Unifying Data-Parallel and Graph-Parallel
Analytics

Daniel Crankshaw
Michael J. Franklin

ucC Berkele?l
T

Ankur Dave
lon Stoica

AMPLab
anklin, istoica}@cs.berkeley.edu

GraphX

T s & S

g g Sl

Figure 1: Graph Analytics Pipeline: Graph analytics is the pro-
cess of going from raw data, to a graph, to the relevant subgraph,
applying graph algorithms, analyzing the result, and then potentially
repeating the process with a different subgraph. Currently, these
pipelines compose data-parallel and graph-parallel systems through
a distributed file interface. The goal of the GraphX system is to
unify the data-parallel and graph-parallel views of computation into
a single system and to accelerate the entire pipeline.

(e.g., PageRank and connected components). By leveraging the
restricted abstraction in conjunction with the static graph structure,
these systems are able to optimize the data layout and distribute the
execution of complex iterative algorithms on graphs with tens of
billions of vertices and edges.

By restricting the types of computation they express to iter-
ative vertex-centric algorithms on a single static graph, these
graph-parallel systems are able to achieve orders-of-magnitude
performance gains over contemporary data-parallel systems such
as Hadoop MapReduce. However, these same restrictions make

Apache Spark: A Unified Engine for Big Data Processing

PAGE 23

>

UNIVERSITY OF

WATERLOO

Property Graph

Part. |

e

2D Cut Heuris

\

Prloi

Apache Spark: A Unified Engine for Big Data Processing PAGE 24

>

UNIVERSITY OF

WATERLOO

Property Graph

@_ o Part. |
 =»

x 2D Vertex Cut Heuristic
R):"I
|
d— E BaEia?
W UNIVERSITY OF
N

Apache Spark: A Unified Engine for Big Data Processing PAGE 25 @ WATERLOO

Vertex Table Edge Table
Property Graph (RDD) (RDD)

@_ & Part. |
\ N\
 =»
% 2D Vertex Cut Heuristic

: \ / y
d_ ¥ Part.2
UNIVERSITY OF

Apache Spark: A Unified Engine for Big Data Processing PAGE 26 @ WATERLOO

DDODDD
QOOOIOOC)

s 0O0OIOOOE

Property Graph

@_ _p Part. |
x ‘=

X 2D Vertex Cut Heuristic

N A
o

Apache Spark: A Unified Engine for Big Data Processing

Vertex Table
(RDD)

DOODNND

Routing
Table

(RDD)

Edge Table
(RDD)

olololo) Clolole
HEOOEOOE

PAGE 27

%’ WATERLOO

= Not able to beat specialized graph-parallel systems itself

= But outperform them in graph analytics pipeline

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 28 @ WATERLOO

MLIIb

MLIib: Machine Learning in Apache Spark

Abstract

Apache Spark is a popular open-source platform for large-scale data processing that is
well-suited for iterative machine learning tasks. In this paper we present MLLIB, Spark’s
open-source distributed machine learning library. MLLIB provides efficient functionality for
a wide range of learning settings and includes several underlying statistical, optimization,
and linear algebra primitives. Shipped with Spark, MLLIB supports several languages and
provides a high-level API that leverages Spark’s rich ecosystem to simplify the development
of end-to-end machine learning pipelines. MLLIB has experienced a rapid growth due
to its vibrant open-source community of over 140 contributors, and includes extensive
documentation to support further growth and to let users quickly get up to speed.

Keywords: scalable machine learning, distributed algorithms, apache spark

UNIVERSITY OF

Apache Spark: A Unified Engine for Big Data Processing PAGE 29 ii WATE RLOO

MLIIb

= More than 50 common algorithms for distributed model
training

= Support pipeline construction on Spark

= Integrate with other Spark libraries well

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 30 @ WATE RLOO

Why use Apache Spark?

= Ecosystem

. Streaming SQL ML Graph
= Competitive performance

= Low cost in sharing data
APACHE

= Low latency of MapReduce Steps SpQ[‘K

= Control over bottleneck resources

@ &8 vesos SGIE n AN

=Taaralal
liEEEE o cassandra openstack

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 31 @ WATE RLOO

Apache Spark in 2016

= Apache Spark applications range from finance to scientific data
processing and combine libraries for SQL, machine learning, and graphs.

= Apache Spark has grown to 1,000 contributors and thousands of
deployments from 2010 to 2016.

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 32 @ WATE RLOO

Apache Spark Today

SparkR: Scaling R Programs with Spark

Matrix Computations and Optimization in Apache Spark

Shivaram
Xiangrui Me
-] KeystoneML: Optimizing Pipelines for Large-Scale
Advanced Analytics

ABSTRACT re Evan R. Sparks®, Shivaram Venkataraman®, Tomer Kaftan*!, Michael J. Franklin*f, Benjamin Recht*
R is a popular statist {sparks,shivaram,tomerk 1 1,franklin,brecht} @cs.berkeley.edu
extensions that suppo *AMPLab, Department of Computer Science, University of California, Berkeley
However, interactive 16803 ?Department of Computer Science, University of Chicago

runtime is single thre bur tDepartment of Computer Science, University of Washington
a single machine’s m

provides a frontend t

computation engine t Abstract—Modern advanced analytics applications make use 1. Pipeline Specification 2. Logical Operator DAG
shell. We describe t of machine learning techniques and contain multiple steps of
the high-level DataF domain-specific and general-purpose processing with high re-
present some of the k| source requirements. We present KeystoneML, a system that cap- val pipe = v
SParY tures and optimizes the end-to-end large-scale machine learni Femunze anathen [P
ptimizes the end-to-end large-scale machine learning Featurize andThen
applications for high-throughput training in a distributed envi- (Est, data, labels) \ ¥ v
ABSTRACT ronment with a high-level API. This approach offers increased —(>

ease of use and higher performance over existing systems for large

scale learning. We demonstrate the effectiveness of KeystoneML /

in achieving high quality statistical accuracy and scalable training

using real world datasets in several domains. i

h

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 33 @ WATE RLOO

= What is Apache Spark
= Apache Spark = MapReduce + RDDs

= How can it make multiple types of conversions over big data

= Higher-level libraries enable Apache Spark to handle different types
of big data workload

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 34 @ WATERLOO

“Try Apache Spark if you are new to the big data
processing world”

Huanyi Chen

Apache Spark: A Unified Engine for Big Data Processing PAGE 35

0’4

= What issues will it cause by persisting data in memory? For
example, garbage collection?

= What are Parallel Random Access Machine model and Bulk
Synchronous Parallel model? Are these two models able to
model any computation in distributed world?

= Will optimizing one library cause other libraries to lose
performance?

= Is using memory as the storage really the next generation of
storage?

w UNIVERSITY OF
Apache Spark: A Unified Engine for Big Data Processing PAGE 36 @ WATE RLOO

